Categories: Thoughts

Explain vs. Explore: Decoding Data Vizualization Goals

This is the second post in our series ‘Principles of Data Visualization’ #PoDV Whether you create visualizations for product dashboards or interact with them in your daily work, understanding the underlying goal is one way to get the most out of visualizations. It creates the right expectations before you begin creating or analyzing the visual, resulting in better results. In this post, we’ll look at two common data visualization goals and how they apply to real-world examples.  If you’re looking for a Data Visualization Tool, we suggest using fusioncharts for data visualization.

Two Goals in Data Visualization

In a business context, the two main goals that visualizations have are to:

  • Explain
  • Explore
Let’s discuss each of these goals in detail.

1. Explain the Data to Tell a Story

As mentioned in the first post, the reason we visualize data is to tell a story. If the designer of the visual has a story to tell the viewer with the data, the goal of the visual is to explain. There is a defined structure starting from the main narrative, and trickling down to each part of the visual. These visuals are effective for making a point or conveying an insight from the data. For example, the main narrative in the simple column chart below is to highlight the country with the highest value:

The designer of this visual starts by asking a question of the data – Which is the highest value? – and designs the chart to simply answer this question. The viewer follows a similar process when interpreting the chart. This process can be understood by the following illustration:

Explanatory visuals are editorially driven, that is, the designer leaves little to the imagination of the viewer, and crafts the visual with care to bring out the story most clearly. Presentation and design become important. All effort is made to reduce noise from the visual, so there are no distractions from the main narrative. Due to this, most explanatory visuals tend to be static and not interactive. This gives more creative control to the designer and makes it easier to direct the process of interpretation. This type of visualization is used in business scenarios for the following tasks:
  • Answer a question. E.g., How much sales did we have last quarter?
  • Support a decision. E.g., We need to stock more football jerseys as they were sold out on most days last week
  • Communicate information. E.g., Revenue is on track for this quarter
  • Increase efficiency. E.g., “Technical specifications” is the most viewed section on the product page. It should be given more visibility.
Most of the visualizations we come across in daily scenarios fall in this category. In business, they appear in product dashboards, business presentations, training materials, and marketing content. They’re also used in the media for advertising, print and television journalism, and political campaigning.

2. Explore Large Data Sets to Discover Many Stories

Explanatory visuals are not editorially driven, but rather are viewer-driven. The emphasis is not on a single important story but on discovering many small stories in the visual. The designer may not even be sure what story is there in the data. The aim of the designer is to present the data in a way that invites the viewer to notice the obvious and discover surprising insights. It simply gives away a number of ideas for the viewer to make something meaningful. For example, below is a visualization of the State of the Union address of recent Presidents:

Here, the viewer starts by becoming familiar with the visual, then identifies an area of interest. For example, ‘Which President spoke most about jobs?’ She then explores the ‘Jobs’ section of the visualization and finds her answer – Barack Obama. She could then move on to exploring other areas of the visualization.

Exploratory visuals invite the viewer to get an overview of the visual, ask questions along the way, and find answers to those questions. The process can be illustrated as follows:

This process can be cyclical without a specific endpoint. It doesn’t follow a particular order, and the viewer can find many insights or none at all. The outcome can be to gain awareness of a topic rather than to make a specific decision. This type of visualization can accomplish the following tasks:
  • Pose new questions
  • Discover new areas of interest
Exploratory visuals work well when there’s a high volume of data to visualize. The designer tolerates some level of noise in the visual to give the viewer more granularity. Because of the granularity of the data, exploratory visuals are often interactive rather than static. For example, the visual could use a drill-down feature to show or hide the various paths available to the viewer. In this case, the visual functions as an interface to the data. Though they’re not as popular, exploratory visualizations have been gaining prominence in recent years with the rise of big data. The high volume of data and varied data sets that have become common today can only be analyzed using exploratory visuals.

The Hybrid Model

When viewing a visual, the easiest way to tell the type of visualization is to ask who does the work to reveal insights from the data. If the designer has done the work and made the insights clear, it’s an explanatory visual. If the viewer needs to find insights that the designer hasn’t made clear, it’s an exploratory visual. That said, most visualizations fall somewhere in-between. Most visualizations are based on a curated data set that allows some, or a lot of exploration. When designing a visualization it’s important to balance both elements – explanation, and exploration.

Now that we have a good understanding of the two goals of visualizations, let’s look at a few common examples that we come across in our daily lives.

Examples From Daily Life

A Speedometer

This visual is designed to convey just one metric – speed. There is no exploration to be done here. It’s a great example of an explanatory visual.

The London Underground Map

The London metro map though packed with information is explanatory. It’s designed to show the best route from point A to B, and the designer has done the work to make it do just that. The viewer comes with the question ‘How do I get from point A to B?’, looks at the map, and finds the route.

Blog Tag Cloud

We’ve all seen tag clouds on blogs. They highlight the most-used tags from the blog, and in that sense are explanatory, giving emphasis to the bigger words. However, they also show many less frequent tags that invite exploration. They’re a great example of a hybrid visualization.

Google Maps

Google Maps is also a hybrid visualization. It can be used to explain the driving directions from point A to B, similar to the London Underground map – explanatory. It also allows zooming and panning to discover the surrounding areas, and landmarks – exploratory.

Google Hot Trends Fullscreen

If you’ve not come across this visualization, do take a look. It’s quite fascinating. It visualizes Google search queries in real-time in the form of a colorful grid. The queries keep changing every second. This visualization doesn’t highlight any single search query but rather invites the viewer to explore any part of the visual to find out what users are searching for right now. The story is left to the viewer to discover. This sort of visualization is possible only with the scale of big data. It’s a great example of an exploratory visualization.

Explain or Explore? The Choice is Yours

In summary, the two main goals of visualizations are to explain or to explore data. Most visuals are a hybrid of both goals. When designing a visual it pays to decide at the outset what balance the visual should have – more explanatory, or more exploratory. This single technique can greatly improve the quality of visualizations, and result in even better storytelling.

This post is the second in a series of posts. If you’d like to get the lowdown on what’s in this series from start to end, read our white paper ‘Principles of Data Visualization.’ You don’t even have to fill in a download form to read it. In the next post, we’ll dive into the mechanics of how we process visual information. We’ll consider the role of memory in perceiving visual information, and how to apply that understanding as we work with visualizations. Stay tuned!
Twain Taylor

View Comments

  • I appreciate, lead to I discovered exactly what I used to be taking a look for.

    You have ended my 4 day long hunt! God Bless you man. Have a nice day.
    Bye

  • i loved this pot ! i read your blog fairly often and you're always coming out with some great
    stuff. i shared this on my Facebook and my followers loved it !
    Keep up the good wor... :)

Recent Posts

Announcing FusionCharts v4.1: Elevate Your Data Visualization Experience!

We’re excited to announce the upcoming release of FusionCharts v4.1—a groundbreaking step forward in the…

5 days ago

Bubble Maps: Visualizing Data Like Never Before

Have you ever been overwhelmed by a massive data set and wondered, "How do I…

2 weeks ago

Stock Charts: Mastering the Art of Visualizing Financial Data

If you’ve ever tried to make sense of the stock market, you’ve probably come across…

4 weeks ago

What is a Bar Chart Used For?

Imagine you’re comparing the sales performance of your top product lines across different regions, or…

2 months ago

AI-Powered Documentation for Data Visualization & Analytics

Have you ever spent hours buried in documentation, hunting for a specific piece of code?…

3 months ago

Unveiling the Hidden Gems: Top 5 AI Data Visualization Tools for 2024

Do you feel like your data is a cryptic puzzle, locked away from revealing its…

4 months ago